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Abstract 
In this essay, we examine the use of resting state fMRI data for psychological inferences. We 
argue that resting state studies hold the paired promises of discovering novel functional brain 
networks, and of avoiding some of the limitations of task-based fMRI. However, we argue that 
the very features of experimental design that enable resting state fMRI to support exploratory 
science also generate a novel confound. We argue that seemingly key features of resting state 
functional connectivity networks may be artifacts resulting from sampling a ‘mixture distribution’ 
of diverse brain networks active at different times during the scan. We explore the consequences 
of this ‘mixture view’ for attempts to theorize about the cognitive or psychological functions of 
resting state networks, as well as the value of exploratory experiments. 
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1 Introduction 
Functional magnetic resonance imaging (fMRI) is an immensely popular tool for studying human 
cognition. In standard task-based fMRI studies, neuroscientists manipulate tasks and measure 
resulting changes in the blood-oxygen-level-dependent (BOLD) signal within voxels, or small 
volumes of brain analogous to pixels in a digital image). In a standard subtraction design (Posner 
et al. [1988]; Friston et al. [1996]), neuroscientists compare BOLD measurements from a 
psychological task of interest (reading a meaningful word like ‘DOG’) to those of a matched 
control task that ideally differs in only one psychological component or process (reading a non-
word like ‘BLORT’). Significant differences in BOLD signals are used to localize a given 
psychological process (semantic processing) to particular voxels or brain regions.1 This kind of 
function-to-structure inference is known as ‘forward inference’ (Henson [2006]; Machery 
[2012]). Given mappings established by these experiments, neuroscientists who observe similar 
activation in a subsequent experiment often infer that the new experiment involves that 
psychological process. This form of structure-to-function inference is known as ‘reverse 
inference’ (Poldrack [2006]; Nathan and Del Pinal [2016]). 

																																																								
1 Cognitive subtraction in neuroimaging was originally developed for early positron emission tomography (PET) 
studies of language (as in Posner et al. [1988]) before being applied to fMRI (as in Kanwisher et al. [1997]).	



	

 Philosophers and neuroscientists have extensively debated the experimental and inferential 
logics employed in subtractive, task-based neuroimaging (Friston et al. [1996]; Van Orden and 
Paap [1997]; Coltheart [2006]; Poldrack [2006]; Roskies [2009]; Klein [2010]; Machery [2012], 
[2013]; Glymour and Hanson [2015]; Nathan and Del Pinal [2016]). One debate is whether the 
assumption of ‘pure insertion’—namely, that task pairs differ solely in the recruitment of one 
identifiable, independently modifiable psychological component—is valid (Friston et al. [1996]; 
Van Orden and Paap [1997]; Roskies [2010]). Another is whether region-based reverse inference 
is legitimate given that brain regions appear to be highly multi-functional (Poldrack [2006]; 
Anderson [2010]; Klein [2012]; Machery [2013]; McCaffrey [2015]; Nathan and Del Pinal 
[2016]). In addition, new experimental designs and analytic tools (such multi-voxel pattern 
analysis, MVPA) are emerging that seemingly have different strengths and limitations than 
traditional designs, and so avoid some philosophical questions while prompting others (Glymour 
[2015]; Del Pinal and Nathan [2017]; Wright [forthcoming]). More generally, as novel 
neuroimaging methods arise, we need to ask whether they present novel challenges or issues, and 
also whether they escape or inherit the challenges of older methods. 
 Over the past twenty years, a new type of experimental design—resting state fMRI—has 
emerged from the puzzling observation that many brain regions exhibit correlated, low frequency 
(~0.01-0.10 Hz) BOLD fluctuations while participants are ‘resting’ between task blocks (Biswal 
et al. [1995]; Binder et al. [1999]; Gusnard and Raichle [2001]; Raichle et al. [2001]). This 
surprising, accidental finding in the 1990’s led to the subsequent characterization of the so-called 
‘default mode network’ (¾a set of regions whose activity is correlated at rest, but uncorrelated 
during specific tasks (Raichle et al. [2001]; Greicius et al. [2003])¾and explorations of the 
brain’s ‘intrinsic’ dynamics in the absence of explicit experimental tasks (Snyder and Raichle 
[2012]). In general, resting state fMRI designs (i) measure BOLD correlations between brain 
areas in participants given no instructions other than to stay awake; and (ii) use those correlations, 
perhaps after some processing, to infer functional connectivity networks’—that is, networks of 
highly correlated brain regions (Power et al. [2014]).  
 Resting state fMRI is a rapidly burgeoning area of clinical and basic research. Power, 
Schlagger, and Petersen ([2014], p. 692) observe that ‘resting state fMRI has grown from an 
unexpected observation in fMRI ‘noise’ to a major area of human neuroimaging.’ At the same 
time, it is not obvious what resting state studies reveal about the mind or brain. Modestly, they tell 
us which voxels or regions show correlated BOLD activity during this type of rest. More 
ambitiously, these correlations could be a way to discover possible anatomical connections (as 
suggested by Biswal et al. [1995]; Bray et al. [2015]). And many theorists (Snyder and Raichle 
[2012]; Andrews-Hanna et al. [2014]; Klein [2014]) want to go further and use resting state fMRI 
to make inferences about the psychological functions of particular resting state networks, despite 
the lack of experimental control (of psychological states or processes) in these studies.  
 In this paper, we examine psychological inferences drawn from resting state fMRI 
research, such as ‘network X is for autobiographical memory’; ‘changes in network Y reflect 
sensorimotor learning’; or ‘differences in network Z underlie the cognitive deficits observed in 
schizophrenia.’ In short, our targets are the various forward or reverse inferences made using 
resting state networks. We make two arguments. First, resting state fMRI has the potential to 
reveal new aspects of the brain’s functional architecture in a (somewhat) bottom-up fashion. 
Resting state designs are potentially a kind of exploratory experiment (Steinle [1997]; Franklin 
[2005]) that enables discovery of both cognitive functions and relevant functional brain units 
without strict task designs (Biswal et al. [2010]; Snyder and Raichle [2012]). This approach 



	

contrasts with cognitive subtraction designs, which rely on either strict control of functions/tasks 
to discover relevant brain units (forward inference), or assume knowledge of the unit-to-function 
mappings to discover what functions are part of a designated task (reverse inference) (Van Orden 
and Paap [1997]; Roskies [2010]). Resting state experiments are not, we will suggest, entirely 
bottom-up or theory free, as they aim to contribute to cognitive theorizing. Nonetheless, they 
require many fewer top-down commitments or constraints than most fMRI studies. 

Second, and more importantly, we develop a novel challenge for interpretations of resting 
state fMRI data. Resting state research often aims to discover the function(s) of large-scale 
(correlation) networks that are consistently identified across individuals. We argue, however, that 
these networks plausibly contain sampling artifacts that do not correspond to underlying brain 
connections. More precisely: (1) resting state data plausibly result from sampling (over time) a 
mixture distribution composed by multiple smaller, truly functional networks engaged at different 
times; and so (2) some (though surely not all) observed correlations are spurious and do not 
correspond to an underlying causal or functional relation; but (3) the data alone do not tell us 
which correlations are spurious and which are not. Thus, the very experimental features that 
reveal new networks in resting state fMRI¾namely, participants engaging in many different 
cognitive processes over a period of time¾create a new problem for psychological inferences 
about resting state data. There are other challenges for cognitive inferences from resting state data 
that are independent of our central concern, but we focus here on the novel problem of mixtures. 
 We begin in Section 2 with an introduction to resting state fMRI, including its 
methodology and possible uses. Section 3 presents the mixture view that resting state networks 
may involve sampling artifacts rather than only genuine features of the brain’s functional 
anatomy. This view thus presents novel complications that have not been discussed in previous 
philosophical work on the possibility of artifacts in neuroimaging research (Roskies [2007]). 
Section 4 examines the mixture view in more depth, including evidence in its favor (though novel 
experimental validation falls outside of the scope of the present paper) and prominent objections. 
Section 5 turns to the more positive project of examining two ways that neuroscientists might 
respond to the mixture challenge, both of which reopen the possibility of using resting state fMRI 
as a ‘discovery science’ for functional brain anatomy (Biswal et al. [2010]). Resting state fMRI is 
a novel methodology with intriguing results, but with significant challenges to its use for 
psychological inferences. 
 

2 Functional Network Discovery in Resting State fMRI 
Task-based fMRI studies employ a clear strategy: conduct controlled psychological experiments, 
measure BOLD signal changes, and then draw functional inferences about regions with changed 
activation. This strategy could enable one to discover what regions are involved in recognizing a 
face (Kanwisher et al. [1997]) or whether two different memory tasks recruit the same brain 
regions (Henson [2006]). The success of these projects may be debatable (Coltheart [2006]; 
Roskies [2009]), but the goals are clear. In contrast, the aims of resting state fMRI (rsfMRI) are 
less immediately clear, as those studies are ‘uncontrolled according to the usual conventions that 
apply to cognitive neuroimaging’ (Snyder and Raichle [2012], p. 902). We propose that they can 
advance a ‘discovery science’ of functional brain anatomy (Buckner et al. [2008]; Biswal et al. 
[2010]), but that claim requires more detail about the methodology. 
 In a typical rsfMRI study, participants lie passively in the scanner, and researchers 
examine how the BOLD time series for different seed regions (predefined regions of interest) 
correlate with one another over timescales of several minutes to an hour, perhaps using various 



	

thresholds or network detection algorithms to extract robust network structure (Beckman et al. 
[2005]; Fox et al. [2005]; Power et al. [2014]). The resulting functional connectivity networks are 
typically reported as pairwise correlation coefficients between seed regions, and are often 
depicted as graphical networks superimposed on an anatomical image of the brain (see Bullmore 
and Sporns [2009]). We use the term ‘resting state network’ (RSN) to refer to these functional 
connectivity patterns observed in rsfMRI experiments. Importantly, the term ‘functional 
connectivity’ is potentially misleading here, as these networks only capture correlational (as 
opposed to causal or anatomical) structure. Causal relationships are encoded in so-called effective 
connectivity networks (Friston [2011]), which require different inference techniques. 
 There is ample evidence that RSNs reflect real neural activity, and are not merely the 
product of head motion, cardiac cycle, or other obvious confound (Glover and Lee [1995]; Lowe 
et al. [1998]; He et al. [2008]; Johnston et al. [2008]). RSNs appear to be altered in clinical and 
psychiatric populations (Zhou et al. [2007]; Wu et al. [2009]), and can be used to predict the 
severity of stroke-related cognitive deficits (Warren et al. [2014]). They may thus have prognostic 
or diagnostic value, independently of any other value. But we might hope for more, as different 
studies have consistently identified RSNs corresponding to known anatomical or functional brain 
networks. For example, there are RSNs corresponding roughly to the visual system, motor 
system, executive system, and so forth (Damoiseaux et al. [2006]; Fox and Raichle [2007]; Smith 
et al. [2009]; Cole et al. [2014]; Bray et al. [2015]). More generally, areas one would expect to be 
coordinated during tasks, such as different hemispheres of the motor cortex, tend to correlate 
during rest (Biswal et al. [1999]; Fox et al. [2005]). This suggests some as-yet-unknown 
relationship between RSNs and the causal/functional brain networks that perform sensory, motor, 
and cognitive functions.  
 Many researchers are thus interested in the potential cognitive functions of RSNs 
(Andrews-Hanna et al. [2008]; Vahdat et al. [2011]; Uddin [2015]), such as imagination (Mason 
et al. [2007]), mindwandering (Christoff et al. [2016]), top-down attention (Markett et al. [2014]), 
and so on. But how can we establish these mappings when we have no control over the 
participants’ psychological processes? Philosophically, it is useful to think of rsfMRI studies as 
exploratory experiments (Steinle [1997]; Franklin [2005]; Biswal et al. [2010]) that search for 
meaningful patterns in data without definite prior hypotheses about what might cause those 
patterns. In genetics, for example, researchers sometimes aim to learn about gene regulatory 
networks by measuring large numbers of mRNA transcripts in target cells rather than using 
background knowledge to design targeted experiments (Basso et al. [2005]). Similarly, in rsfMRI, 
researchers seek to learn about brain activation patterns without a strong background cognitive 
theory, and have thereby seemingly revealed novel networks not reliably found in task-based 
studies, such as the original default mode network (DMN) (Biswal et al. [1995]; Shulman et al. 
[1997]; Gusnard and Raichle [2001]; Greicius et al. [2003]; Power et al. [2013]). rsfMRI thus 
might be useful as a discovery tool (Damoiseaux et al. [2006]; Biswal et al. [2010]) that provides 
a new way to identify functional brain networks. 
 Meaningful functional divisions typically cannot be identified solely based on anatomical 
divisions in the brain (sulci, gyri, cytoarchitectural divisions, and so on). Instead, we have 
historically used lesion studies and low-level neurophysiology studies, and more recently task-
based fMRI studies, to find evidence of functional localization. For example, various fMRI 
studies have suggested (though not without debate) plausible psychological functions for the 
fusiform face area (FFA) (Kanwisher et al. [1997]), the right temporoparietal junction (Saxe and 
Kanwisher [2003]), the visual word form area (Cohen et al. [2000]), and many other cortical 



	

regions. Discovery of such mappings in task-based fMRI is parasitic on our ability to design 
carefully controlled task pairs that target a single psychological process (Van Orden and Paap 
[1997]; Roskies [2009]). Thus, the search for new brain mappings in task-based imaging is highly 
constrained by our existing cognitive models and tasks (Van Orden and Paap [1997]; Price and 
Friston [2005]). In contrast, rsfMRI seems to have the potential to reveal functional brain 
networks without carefully controlled task pairs inspired by existing cognitive models. rsfMRI 
seems to provide a ‘bottom-up’ (unconstrained by cognitive theorizing) way of doing human 
brain mapping. 
 As an example, the DMN was initially observed during rsfMRI experiments, but with little 
idea about its potential functions (Greicius et al. [2003]). Subsequent task-based studies now 
implicate the DMN in numerous cognitive functions related to internally-guided thoughts such as 
imagination or mindwandering (Mason et al. [2007]; Spreng and Grady [2010]; Andrews-Hanna 
et al. [2014]; Christoff et al. [2016]). We thus have a reversal of the usual approach to brain 
mapping: researchers first identified a potential ‘functional’ brain network, and only then asked 
what function(s) it performs. Of course, this hypothesis-suggesting role for rsfMRI is quite 
limited, as seen in a dilemma posed by Morcom and Fletcher ([2007], see also Klein [2014]): if 
rsfMRI reveals RSNs that cannot be studied with tasks, then we seemingly cannot determine their 
function; but if these networks can be studied with tasks, then rsfMRI studies are ultimately 
superfluous. We contend that adjustments to our view of exploratory experiments can enable us to 
escape their dilemma. 
 In general, we argue that a key dimension characterizing exploratory experiments is (lack 
of) experimental control. Experiments can be more or less controlled, and thus there is not a strict 
distinction between ‘hypothesis-driven’ and ‘exploratory’ experiments. Moreover, loosening 
experimental control can sometimes permit the discovery of novel patterns that would be time-
consuming, difficult, or perhaps impossible to observe in more controlled settings. For example, 
O’Keefe and Dostrovsky ([1971]) observed correlations between neural firing rates and freely-
performed naturalistic behaviours such as walking, and thereby found initial evidence for rat 
hippocampal place cells. Hypotheses played a role in this exploratory work, as previous lesion 
work suggested the hippocampus was a reasonable place to find encodings of environmental 
features. However, their experiments did not force the rats to perform a particular task, and so 
could reveal more neural-behaviour correlations than a more strictly controlled experiment. 

For reasons of space, we do not provide a full philosophical analysis of ‘control’ in this 
paper, but we need only a high-level characterization for our present purposes. Experimental 
control is a multidimensional notion, including variation in terms of (at least): magnitude of 
control; precision of control; specificity of the target of control; scope or breadth of control; and 
context sensitivity of control abilities. For our present purposes, it suffices to note that rsfMRI 
involves reduced control of the participant’s cognitive processes along every one of these 
dimensions; for example, the lack of any specific task means that rsfMRI involves small 
magnitude or extent of control, as the experimenter does not have any substantial influence on the 
participant’s cognitive processing.  

Prior philosophical work has often characterized exploratory experiments as those that: (1) 
are not hypothesis-driven, and (2) involve wide instrumentation or simultaneous measurements of 
numerous variables (Steinle [1997]; Franklin [2005]). However, rsfMRI studies are not wholly 
‘theory free’, and are often constrained by prior cognitive theory. For instance, experimental 
explorations of the DMN are guided by theoretical considerations about what participants are 
likely doing during their time in the scanner (Christoff et al. [2016]). Indeed, linking RSNs to 



	

cognitive functions necessarily requires some degree of background theory. Nonetheless, rsfMRI 
experiments should still be understood as exploratory studies, precisely because they are far less 
controlled than subtraction designs. This lack of control can be used to identify novel networks 
(as with the DMN), or to broaden the search for correlations between behavioural measures and 
brain network topology. Some concrete examples can help to demonstrate that reduced 
experimental control, not elimination of theory, is the key to exploratory experiments (at least, for 
rsfMRI). 

Vahdat et al. ([2011]) conducted rsfMRI scans of arm-related somatosensory and motor 
regions before and after participants learned (outside of the scanner) a novel reaching task with 
sensory and motor components. They determined correlations between neuroplasticity in RSNs 
and changes in either motor or perceptual performance, and thereby found a novel network 
corresponding to perceptual changes accompanying motor learning. In a standard task-based 
design, participants would perform the same reaching task before and after learning, and so 
BOLD activation levels would not distinguish changes due to motor execution versus perceptual 
learning. By contrast, comparison of RSNs to performance enabled the researchers to decouple 
these effects. Similarly, Markett et al. ([2014]) found correlations between rsfMRI-derived 
topological features of the frontoparietal attention network (FPAN) and performance on various 
attentional tasks (such as low centrality in two regions predicted better performance on alerting 
attention tasks). The focus on FPAN was driven by prior theory, but the novel potential 
connection between brain network topology and task performance depended precisely on not 
controlling participants in a task-based design way. 

Neither of these rsfMRI studies was wholly bottom-up or theory free; they both involved 
many theory-laden decisions, particularly about focal brain regions and behaviours.2 However, in 
each case, neuroscientists identified novel patterns of correlations by relaxing the degree of 
experimental control. That is, rsfMRI studies functioned as exploratory experiments that 
uncovered correlation patterns that would have been difficult or perhaps even impossible to 
discover on a task-by-task basis. However, this conclusion raises a crucial question: do the 
functional connectivity (correlation) patterns observed at rest really signify the kinds of brain 
structures onto which psychological functions map? Unfortunately, there are significant grounds 
for skepticism, despite the tantalizing correlations uncovered so far. 

 
3 Psychological Inference and Mixture Artifacts. 

rsfMRI studies reliably reveal a set of large-scale (correlational) RSNs that often mirror known 
functional brain systems (Damoiseaux et al. [2006]; Fox and Raichle [2007]), and sometimes 
suggest the existence of novel ones (Power et al. [2011]; Uddin [2015]). These findings suggest 
that RSNs are somehow (cognitively) functionally relevant, and thus there is increasing interest in 
characterizing the cognitive functions of RSNs (Mason et al. [2007]; Spreng and Grady [2010]; 
Vahdat et al. [2011]; Markett et al. [2014]). In this section, though, we argue that RSNs obtained 
in rsfMRI plausibly include some connections (though we do not know which) that are sampling 
artifacts produced by sampling from a mixture distribution of smaller networks active at different 
times during the scan. That is, seemingly key features of RSN X may reflect sampling artifacts 
rather than real features of the brain’s underlying causal or cognitive organization, and this 
discrimination requires knowledge about which brain networks have coherent psychological 
functions. That is, reliable inferences about the psychological functions of RSNs require prior 

																																																								
2	Thanks to an anonymous reviewer for emphasizing this point. 



	

knowledge of the very psychological functions we aim to infer. We will use the term ‘mixture 
view’ to refer to this collection of concerns.  

Typical psychological inferences in neuroimaging—in particular, that network X performs 
function Y—require a clear target region (Poldrack [2006]), network (Klein [2012]; Glymour and 
Hanson [2015]), or activation pattern (Del Pinal and Nathan [2017]). We need to know the 
‘structure’ whose cognitive function is being inferred to (in the case of forward inference) or from 
(in the case of reverse inference). RSNs seem to provide a new set of targets for functional 
inference, such that researchers could propose ‘network X is for mindwandering’ (a forward 
inference) or ‘network Z is currently engaged, so the participant is likely engaged in mental 
imagery’ (a reverse inference). Non-mixture concerns have previously been raised about whether 
RSNs provide such targets. First, RSNs are sometimes thought to reflect baseline activity that is 
unrelated to conscious cognition (Raichle et al. [2001]), and so are not appropriate targets for 
psychological inferences.3 This possibility might be surprising, but consider an analogy: when a 
truck is idling, its engine and drivetrain components are not doing exactly what they do when the 
truck is driving, but are still informative about how a truck operates. Of course, this possibility 
depends on whether networks observed during rest are active in other contexts (Klein [2012]). 
Recent studies report a great deal of similarity in the networks observed at rest versus during tasks 
(Cole et al. [2014]; Yeo et al. [2015]), but the precise relationship between occurrent cognitive 
processes and RSNs remains unclear (Van Calster et al. [2016]). 

A second concern about RSNs as targets for psychological inference is that they are often 
fairly large networks associated with many functions. The DMN, for instance, spans much of the 
cortex and is linked to mental imagery, autobiographical memory, mind wandering, and more 
(Mason et al. [2007]; Andrews-Hanna et al. [2014]; Christoff et al. [2016]). The DMN might 
therefore be a ‘brain system’ (a collection of regions or networks that serve distinct, but related 
functions, such as the visual system) rather than a network performing a unique single function 
(Poldrack [2006]; Klein [2012]; McCaffrey [2015]). For example, Andrews-Hanna et al. ([2014]) 
recently identified three sub-networks within the DMN, and found that each sub-network was 
associated (in other experiments) with different cognitive domains (such as semantic or episodic 
memory). Sub-components of RSNs may be better targets for psychological inference than whole 
RSNs. 

These are legitimate concerns, but we have a different focus here. The debate to date (and 
most of the neuroscientists we have mentioned) has assumed that RSNs are coherent structures, or 
can be fully decomposed into coherent structures, that plausibly have distinct psychological 
functions. The mixture view challenges exactly this assumption. RSNs are statistical 
(correlational) structures that, we contend, can contain ‘spurious’ or ‘artifactual’ connections in 
the sense that: (a) the connection does not correspond to any underlying causal relation; and (b) it 
would not obtain under different sampling or measurement processes. We emphasize that these 
spurious correlations are truly present in the data; they are ‘spurious’ because they do not reflect 
any underlying causal or neural connection. The issue is thus not just whether and how we can pin 
cognitive functions to RSNs, but also whether RSNs faithfully capture the structure of the 
networks underlying cognition in the first place. Full understanding of this concern requires a bit 
of a detour into some experimental and statistical details.  

																																																								
3 Of course, the ‘resting state’ may consist of both stable baseline metabolic activity and more transient, 
heterogeneous activity related to cognition.	



	

Resting state fMRI involves measuring BOLD correlations4 over long periods of time, 
typically more than ten minutes. Furthermore, scanning protocols for rsfMRI sometimes involve 
longer acquisition times (TRs) than task-based fMRI, since the BOLD fluctuations at rest are 
slower than most task-related changes (see Power et al. [2014]). The sum total of these 
methodological choices is that rsfMRI captures the brain’s activity over a relatively long time 
scale. At the same time, participants are plausibly engaged in a number of different cognitive 
processes during rest. As Morcom and Fletcher ([2007]) note, the ‘resting’ brain is a complex, 
dynamic state in which various brain regions and networks interact with one another as 
participants imagine what they will have for dinner, remember going to the dentist last week, 
attend to the noises of the scanner, and so forth. The resting state signal may thus be significantly 
driven by dynamic network changes accompanying spontaneous thought or ‘mindwandering’ 
(Mason [2007]; Christoff et al. [2016]; Van Calster et al. [2016]). Despite this likely cognitive 
diversity, most rsfMRI analyses infer a single functional connectivity network from the whole 
scan/dataset: the RSN reflects correlations that obtain in the complete time series, even though 
data at different points were plausibly generated by different brain/causal networks. In statistical 
terms, the full time series is plausibly drawn from a mixture distribution.5  

Suppose that we have two different univariate probability distributions, P1(X) and P2(X). 
A mixture distribution PM(X) results from mixing together samples from P1(X) and samples from 
P2(X). Mathematically, we have PM(X) = αP1(X) + (1–α)P2(X), where α is a mixture parameter 
that encodes the relevant proportion of samples from the component distributions P1 and P2. More 
generally, a mixture distribution is a probability distribution that results from combining, in a 
single dataset, samples drawn from distinct probability distributions over the same variables 
(without encoding provenance of samples). In the case of rsfMRI, the whole time series plausibly 
includes samples generated by different cognitive processes or networks, each of which 
corresponds to (or produces) a distinct probability distribution. That is, the rsfMRI time series is 
generated by sampling across time from an unknown, heterogeneous mixture of region and causal 
network activation at different times.  

It is important to be clear about the nature of these ‘mixtures’. At any given moment, the 
brain participates in many different psychological and physiological processes. For example, 
reading a word involves word form recognition, attention, eye movement control, and more, 
whether simultaneously or in short succession. Thus, it is extremely likely, perhaps necessary, 
that any functional connectivity network (not just resting state) will include sub-networks 
corresponding to multiple psychological functions. In fact, cognitive subtraction is intended partly 
to solve this very issue (Posner et al. [1988]), and provides a strategy to find the relevant sub-
networks. In rsfMRI, however, there are no tasks that we can use to isolate psychologically 
functional coherent sub-networks. We might nonetheless hope that we could (somehow) use 
correlations or topological features to decompose the full RSN into sub-networks, and then 
determine the psychological processes for those sub-networks (see Andrews-Hanna et al. [2014]). 
Unfortunately, that strategy will not necessarily work due to the possibility of spurious or 
artifactual edges. These additional edges, we contend, are the product of computing one 

																																																								
4 Some recent RSN inference methods use associations more generally (rather than the more specific measure of 
correlations), particularly to capture non-linear relationships. For convenience, we refer here only to correlations, 
but everything that we say applies to associations in general. 
5 Throughout this section, we talk only about distributions, but everything we discuss generalizes straightforwardly 
to probability densities. 



	

correlation value for each pair of seed regions over a time period in which the underlying causal 
connections are likely shifting. 
 It is well-known that sampling a mixture distribution can result in spurious correlations 
(Hammell and O’Connell [1975]; Redner and Walker [1984]; Zheng and Fray [2004]). Consider 
the following non-neuroscientific example. Assume there is no correlation between height and 
beard growth in men; a short man is just as likely to sport a beard as a tall one. Under these 
conditions, adequate sampling from the population of men will likely yield a low height-
beardedness correlation in the data. Women will similarly have a low height-beard correlation, 
even though they are, on average, both shorter than men and also less likely to have a beard. If we 
now take measurements of men and women (but do not measure sex), then we will have data 
from a mixture distribution. Moreover, we will likely find a correlation between height and beard 
growth, even though there is no correlation within either group: a short (tall) individual is more 
likely to be a woman (man) and so less (more) likely to have a beard. That is, knowledge of an 
individual’s height will be informative about his or her beardedness, even though such knowledge 
is uninformative within each group. In this toy example, the correlation is spurious because (by 
assumption) these traits are uncorrelated in each population. The correlation is a sampling artifact 
that results from drawing individuals from a mixture of two heterogeneous populations. 
 This toy example involves a spurious correlation resulting from the mixture of populations 
in which the variables are uncorrelated. The opposite phenomenon can also occur: two variables 
can be independent in the mixture distribution, even though they are correlated within each 
subpopulation. More generally, even if the qualitative existence and direction of correlations are 
the same in every subpopulation, the mixture distribution can have quite different correlations, as 
seen in classic statistical puzzles such as Simpson’s paradox and the Berkeley graduate 
admissions case of the 1970s (Bickel et al. [1975]). The standard methodological advice is to 
analyse only statistically or causally homogeneous subpopulations, but this advice is of limited 
use when our investigation is intended exactly to discover the causal relations that define the 
subpopulations (Cartwright [1979], [1989]). 

We can be more precise about the potential impact of mixtures on functional connectivity 
networks, as some changes in correlations (and so changes in inferred edges) are more plausible 
than others (Ramsey et al. [2011]).6 In particular, if two variables are correlated in many or all of 
the component distributions, then typically only a few mixture parameter settings will yield 
independence (or zero correlation). In contrast, two variables that are independent in every 
component distribution will typically be correlated in the mixture distribution for a wide range of 
mixture parameters. Simply put, mixture distributions typically create correlations rather than 
eliminate them.7 The exception is when a variable has roughly the same probability distribution in 
each of the component distributions; in that case, mixing typically does not create new 
correlations. Moreover, mixture distributions can be quite stable when measured over long 
periods of time, and so the RSNs that we infer from rsfMRI data can also be highly stable. Thus, 
stability and consistency of inferred resting state networks across multiple subjects (Power et al. 
[2014]; Hurlburt et al. [2015]; Laumann et al. [2016]) is no counter-example to the mixture view 
(see also Objection (1) in the next section).  

																																																								
6	This paragraph can be made precise by reading ‘implausible’ as Lebesgue measure zero. We do not make stronger 
claims about probability or likelihood, as the standard Lebesgue measure might be inappropriate. We suspect that 
probability distributions over the (mixture and component) parameters will exhibit significant context-dependence.	
7 At a high level, independence results only when the mixture parameters and mixture components are ‘balanced’, 
but there are many more ways to have an unbalanced equation than to have a balanced one.  



	

 Our mixture view leads to qualitative expectations about the RSNs for resting state data, 
even without knowledge of the particular mixture in a particular experimental participant or group 
of participants. First, we should not expect the whole-scan resting state network to be complete 
(that is, an edge between every pair of variables), since some brain areas presumably have similar 
activation probabilities across different cognitive processes, whether because the brain regions are 
engaged in functions that are not tied to particular cognitive processes, or because of shared 
functions across the participant’s diverse cognitive activities. Data uniformity across time is even 
more likely to arise, given the enormous amount of smoothing and processing that is done to try 
to remove other types of artifacts (Laumann et al. [2016]). Second, since sampling a mixture 
tends to generate correlations rather than remove them, we should expect to find that inferred 
RSNs are ‘supergraphs’—that is, have strictly more edges—of the superposition of the 
component graphs for the (relevant) underlying neural processes. That is, resting state analyses 
will tend to yield statistical structures with more edges than the union of those constituent 
networks. For example, sampling from a mixture of (data from) the two causal connectivity 
graphs in Figure 1(a) could yield data with a correlation structure represented by something like 
the functional connectivity network in Figure 1(b), though this is just one possibility of many, 
depending on the network parameters and the mixture parameter. Notice that every connection in 
one of the component graphs appears in the inferred graph (solid black for those in just the first 
graph, dotted black for only the second, and dashed black for both), and there are two spurious 
connections indicated with gray dashed lines (A ¾ E and B ¾ C) reflecting data correlations 
induced by the mixture. These kinds of changes can happen for resting state functional 
connectivity networks, except that the edges obviously do not come marked in this way. Instead, 
we learn Figure 1(b) or something similar from data, and then must (somehow) determine that it 
represents a mixture of the two causal connectivity networks in Figure 1(a). 
 
[Insert Figure 1 about here] 
 
 According to the mixture view, any given RSN likely consists of both ‘real’ 
edges¾correlations that would obtain in at least one unmixed component—and ‘spurious’ 
edges¾correlations that obtain only in the mixed sample. However, we do not know which edges 
are real or spurious, so we cannot reliably identify sub-networks as targets for (reverse) 
psychological inference. For example, some studies associate the DMN with autobiographical 
memory (Spreng and Grady [2010]; Andrews-Hanna et al. [2014]), so one might hope that the 
DMN, or some portion of it, would support a network-based reverse inference (Poldrack [2006]; 
Klein [2012]) to autobiographical memory. But since aspects of the RSN may result from 
sampling a mixture distribution, critical connections might be merely artifactual; more generally, 
this large-scale RSN cannot be reliably decomposed into relevant sub-networks (Andrews-Hanna 
et al. [2014]). Similarly, even if a topological feature of an RSN correlates with a behavioural 
measure—for example, the centrality measure of nodes in the FPAN correlates with alerting 
attention measures (Markett et al. [2014])—we cannot reliably determine whether the edges 
supporting that correlation are merely spurious, and so cannot draw interesting psychological 
inferences. The possibility of mixtures thoroughly complicates attempts to draw psychological 
inferences from resting state studies. 
 

4 Arguments For and Against the Mixture View 



	

The previous section gave theoretical reasons to think that the mixture view is possible, and so 
resting state studies may not provide the right targets for psychological inferences such as 
‘network X performs function Y’. In this section, we provide empirical evidence that the mixture 
view is truly plausible, not merely possible. A full defense and confirmation of the mixture view 
would obviously require significant novel experiments and other empirical tests that we cannot 
conduct in the scope of this paper. Nonetheless, we think that it is important to establish that this 
is not a ‘merely theoretical’ worry for resting state research.  
 First, the mixture view predicts that the inferred RSN should dynamically shift over time 
if we look at only short windows of data. The analyses of Allen et al. ([2014]) provide direct 
support for this prediction, as they inferred functional connectivity networks for relatively short 
segments of resting state fMRI data from each of a large number of participants (see also Eavani 
et al. [2015]).8 They then used these inferred networks to compute the ‘network timecourse’ for 
each participant in their database, and showed that most participants had multiple networks over 
the course of data collection (typically changing every five or ten seconds during the five-minute 
scan). Moreover, their ‘changing networks’ model fit the data significantly better than a ‘static 
network’ model with a single unchanging RSN, even accounting for the additional degrees of 
freedom in the former model. Allen et al. ([2014]) thus provide direct evidence for one of the 
fundamental presuppositions of the mixture view—namely, rsfMRI time series data are generated 
by different networks over time. This study is part of a larger research trend focusing on dynamic 
shifts in resting state functional connectivity patterns (Hutchinson et al. [2013]).9 Relatedly, there 
is evidence that inferred RSNs can change depending on the instructions given to participants 
before the scan (Benjamin et al. [2010]; Van Dijk et al. [2010]), which is expected if the RSN is 
(partly) a mixture of networks for different cognitive processes, but not if the RSN is a single 
stable, constant background network.  
 A second major prediction of the mixture view is that RSNs will resemble the union of 
various task-based networks, plus additional inferred edges (though we cannot a priori predict 
which extra or spurious edges will result). Cole et al. ([2014]) directly compared a whole-scan 
RSN and various task-based networks, and generally found that the RSN was quite similar to the 
‘multitask’ network inferred from multiple task-based (or not resting state) studies. That is, the 
RSN was similar to the superposition or union of networks produced by either seven or sixty-four 
different tasks (including working memory, motor, and decision making tasks). They additionally 
compared the RSN against the network for each specific task, and found that the majority of 
differences between the resting dataset and various task-based ones were edges present in the 
RSN but absent in the task-evoked network. In other words, they found that the whole-scan RSN 
is (almost) the union of task-evoked networks for multiple tasks, plus some additional edges. The 
mixture view predicts exactly this pattern of results since sampling from mixture distributions 
tends to generate correlations rather than eliminate them. Interestingly, Cole et al. do not endorse, 
or even seriously consider, the mixture view, but instead argue that we should interpret the resting 
state network as describing the ‘fundamental architecture’ of possible connections within the 
brain. 

																																																								
8 Specifically, Allen et al. estimated covariance matrices for moving windows of approximately forty-four seconds; 
clustered those matrices; and then used the cluster centroid covariance matrices to infer functional connectivity 
networks. 
9	There is debate over whether the fluctuations observed in sliding window analyses reflect measurement noise or 
genuine dynamic shifts in functional connectivity patterns. However, recent studies support the idea that the resting 
state has dynamics that are not explained by noise (Hindriks et al. [2016]).	



	

 Lastly, the mixture view provides an explanation of why RSNs are often associated with 
many different cognitive functions, even after attempts at statistical decomposition. We 
previously noted that Andrews-Hanna et al. ([2014]) performed a meta-analysis of task-based 
studies of the DMN and found consistent differences in the cognitive functions attributed to three 
subsystems identified by Yeo and colleagues ([2011]): a ‘core’ network, a dorsal medial 
subsystem, and a medial temporal subsystem. For example, the dorsal medial subsystem was 
strongly associated with semantics and theory of mind, while the medial temporal subsystem was 
associated with episodic memory. These findings suggest that perhaps the DMN is not a single 
functional network, but a collection of somewhat related networks. Perhaps the dorsal medial 
system appears to have two quite different functions (semantics and mindreading) because 
different causal networks are being connected only through spurious edges. To the extent that 
distinct functional networks share some nodes and frequently occur closely in time, this situation 
is likely to arise. Of course, it is also possible that the DMN actually is a single network with 
multiple, context-sensitive cognitive functions. Or perhaps it performs some single function that 
is poorly captured by our current ‘cognitive ontology’ (Klein [2012]). The mixture view challenge 
is that we cannot distinguish between these options on statistical grounds alone, but rather require 
additional information or guidance. As this conclusion suggests, the mixture view does not imply 
that rsfMRI data are completely useless. Rather, it points towards the need to refine or improve 
our methodologies, or to bring additional knowledge to bear on the psychological inferences. In 
the next section, we consider just what advances might be required. 

 
4.1 Objections to the mixture view 

We conclude our defense of the plausibility of the mixture view by considering three objections, 
grounded in (1) consistency of resting state functional connectivity networks; (2) timing and 
magnitude of resting state activity; and (3) persistence of resting state activity in the absence of 
consciousness. We address these in turn, but emphasize that, even if more research is needed, the 
plausibility of spurious edges suffices to undercut our epistemic warrant that a particular RSN is a 
good candidate for psychological inference.  

Objection (1): The first objection centers on the widespread reports that RSNs are highly 
consistent both between- and within-subjects (Damoiseaux et al. [2006]; Laumann et al. [2015]), 
sometimes to quite stunning degrees (Laumann et al. [2016]). In fact, Laumann et al. ([2016]) 
explicitly argue that RSNs are highly stable in a way that precludes the interpretation that 
‘moment-to-moment changes in cognitive content’ (p. 1) are driving the signal. Moreover, 
roughly similar functional connectivity patterns emerge between scanning sessions for particular 
humans (Damoiseax et al. [2006]; Laumann et al. [2015]); between humans (Damoiseaux et al. 
[2006]); and between individual non-human mammals such as mice (White et al. [2011]) or 
monkeys (Vincent et al. [2007]). These reports appear to be inconsistent with the mixture view, as 
the ratios of cognitive processes (that are supposedly being mixed) need not be consistent. For 
example, a participant might spend one resting scan thinking about an upcoming trip to Disney 
World, vividly imagining the food, riding the roller coasters, and so forth. On the next scanning 
session, the same participant might spend the entire time replaying songs in her head from a 
concert she attended. These very different cognitive sequences should produce very different 
mixtures of conscious cognitive processes, and so (on the mixture view) very different patterns of 
brain activation, seemingly contrary to the actual empirical findings.  
 However, this objection depends on the claim that there is little-to-no consistency in the 
psychological (and so brain) networks activated during the ‘free range’ cognition that occurs in a 



	

rsfMRI experiment, and no evidence has been provided (beyond anecdotal introspection) in 
defense of this claim. Different people, and possibly other mammals, are plausibly engaged in a 
common set of background functions during the scanning session: the proprioceptive system is 
monitoring changes in limb position, the oculomotor system is controlling eye movements, the 
auditory system is responding to scanner noises, and so forth. And plausibly, a number of 
‘typical’ cognitive processes, perhaps quite basic ones, occur during resting scans in a relatively 
predictable fashion or distribution. This possibility is even more likely for long scans, which are 
exactly the ones that show the greatest within- and between-individual consistency (Laumann et 
al. [2016]).  
 Moreover, the mixture view predicts that the mixtures are likely of related cognitive 
processes, as those will be temporally mixed more often. For example, the different cognitive 
functions associated with the default mode network (including social cognition, introspection, and 
autobiographical memory) seem to be connected in just this way (Andrews-Hanna et al. [2014]). 
More generally, free range cognition over the course of a long scan session can plausibly generate 
between- or within-subject consistency in functional connectivity patterns, as cognitive processes 
plausibly occur, co-occur, and follow one another, in a regular fashion. Moreover, recent studies 
suggest that participants exhibit similar cognitive patterns whether in the scanner or in the world 
(Hurlburt et al. [2015]), and so we should expect there to be significant within-subject RSN 
consistency that is grounded in these cognitive patterns. 

Objection (2): The second objection arises from reports that the timing and magnitude of 
resting state BOLD fluctuations differ from those of task-evoked BOLD fluctuations (Raichle 
[2009]; Snyder and Raichle [2012]), which suggests that the former are not just mixtures of the 
latter. For example, Snyder and Raichle ([2012]) argue that resting state BOLD fluctuations are 
both slower and larger in magnitude than task-evoked BOLD changes, and so ‘unconstrained 
cognition alone does not account for the greatest part of intrinsic activity’ (p. 903). Their 
inference is too quick, however, as the mixture view can easily account for these qualitative 
differences. In terms of timing, if functional connectivity patterns arise from mixtures of cognitive 
processes operating at different time scales, then the overall mixture will involve correlations over 
longer time scales than the component processes that neuroscientists typically measure using 
cognitive tasks. And in terms of magnitude, the resting state data reveal conflicting results (for 
example, Snyder and Raichle [2012] vs. Damoiseaux et al. [2006]), and it is not known whether 
this different is due to features of the experimental protocol or differences in the mixture. In fact, 
Section 5 will suggest a way to use this disagreement to possibly test some implications of the 
mixture view.  

Objection (3): Perhaps the most serious objection to the mixture view comes from the 
finding that resting state activity persists in heavily sedated monkeys (Vincent et al. [2007]) and 
humans (Greicius et al. [2008]; Hutchinson et al. [2013]). This result appears inconsistent with a 
mixture composed of conscious cognitive processes. Since functional connectivity patterns 
measured during rest in alert participants seem to persist even in unconscious individuals, rsfMRI 
is plausibly thought to measure intrinsic activity. 

There are two points to make here. First, as we noted earlier, the mixture view is not 
committed to the implausible claim that all RSNs arising solely from mixtures of networks for 
conscious cognition. The brain undoubtedly exhibits some degree of baseline metabolic activity, 
and essentially all cognitive theories leave room for ongoing background activity. For example, 
predictive coding theories (Hohwy [2014]) hold that the brain is constantly generating predictive 
models of the environment, and testing these models against incoming information, whether from 



	

external sensory input or other sources. The mixture view is entirely consistent with RSNs being a 
mix of baseline metabolic processes, background cognitive processes, and free-ranging conscious 
cognition. That is, we view the stability of certain resting state networks in sedated individuals 
(Rosazza and Minati [2011]) as providing insight into one of these process-types, rather than 
implying that the mixture view is false.  

Second, the problem of mixtures is a sampling problem that could also arise for purely 
unconscious cognitive or metabolic processes. Even if resting state protocols measure intrinsic 
neural activity, this activity could result from many distinct processes that are mixed together in 
the sampling process. Insofar as there are dynamic changes in the causal networks engaged during 
the scan, mixtures become a real possibility (whether or not these changes result from occurrent 
cognitive processes or merely changing baseline regimes). Some proponents of resting state fMRI 
argue that resting state analyses measure intrinsic activity—activity that would persist in the 
absence of conscious cognition—that reflects preparatory or anticipatory activity in known 
functional systems, such as motor or visual areas (Damoiseaux et al. [2006]). But inferences to 
these psychological functional subsystems similarly require a solution to the possibility of 
mixtures. 

 
5 Finding Value for the Resting State 

The mixture view challenges whether RSNs as such are appropriate targets of psychological 
inferences from rsfMRI, and so raises questions about the value for cognitive neuroscience of this 
(relatively new) methodology, particularly given advances in task-based methods, such as time-
varying tasks and dynamic analyses. In this section, we aim to provide positive answers to those 
questions: we suggest that rsfMRI studies nonetheless have value in their possibility as a 
‘discovery science’ that discovers new correlational brain networks (Biswal et al. [2010]), 
whether because participants do things during the scanning session that neuroscientists have not 
designed tasks to explicitly target (Mason et al. [2007]; Christoff et al. [2016]), or because there 
is background activity in previously uncharacterized functional brain networks during rest 
(Greicius et al. [2003]). Unfortunately, the very features of resting state studies that provide this 
benefit—participants engage in uncontrolled cognition over long periods of time—are the ones 
that lead to the problem of mixtures, so we need to advance resting state methodologies to avoid 
without falling victim to the problem of mixtures. 
 

5.1 New tools and techniques 
The most obvious potential methodological change would be to shift from reverse inference 
(taking an RSN inferred from a whole scan as given and searching for its function) to forward 
inference (attaching occurrent functions to RSNs). If we determine the cognitive process(es) 
occurring at relevant points in time, then we can use that information to attribute cognitive 
function to the active connectivity network at that moment. The mixture view holds that at least 
some RSNs result from occurrent cognition; they are the networks responsible for remembering 
the grocery list, planning one’s route from the lab to the store, deciding whether to stop on the 
way home, and so on. Resting state experiments do not normally collect reports about 
participants’ introspective mental activities, which is precisely why reverse inference (or 
inferences from learning paradigms) is normally required. In principle, information about 
participants’ internal cognition could be used for forward inference as in task-based studies, albeit 
without control tasks and granting that conscious, introspectively accessible cognition is 



	

informative about only some of the brain’s activity. If an individual is visualizing at particular 
times, for example, then we can (try to) learn the connectivity network for those times.  

There are long-standing worries about the reliability of introspection and self-reporting 
(Jones and Harris [1967]; Nisbett and Ross [1991]; Schwitzgebel [2008]; Engelbert and 
Carruthers [2010]). If participants are instead asked to report their conscious cognition in real-
time, then the study will involve a constant task (namely, to remember one’s conscious states) and 
so will no longer capture unconstrained cognition. Even if participants give reports only 
afterwards, knowledge that they will be asked to do so can plausibly induce constant memory and 
metacognition tasks throughout the experiment. Thus, it seems that the request for (retrospective) 
self-reports must come as a surprise at the end of the study, which raises worries about whether 
participants will report whatever information was ad hoc encoded, perhaps with significant error, 
in memory. Instead, we can consider more sophisticated methods to learn about cognitive 
activities (see also Section 5.2 below). Introspective sampling techniques like Descriptive 
Experience Sampling (DES) ask participants to report their introspective experiences when 
prompted by a random beeper, and so can provide a principled basis for dividing the rsfMRI time 
series, thereby potentially revealing interesting correspondences between patterns of thought and 
resting state signals (Hurlburt et al. [2015]). Some neuroscientists have recently adopted this 
methodology; for instance, Van Calster et al. ([2016]) use various experience sampling 
techniques to link occurrent episodes of top-down and bottom-up attention with activity in the 
dorsal and ventral attention networks. Alternately, one could use experimental instructions that 
are more open-ended than a task-based study without being quite as open-ended as in traditional 
rsfMRI studies, such as ‘think about your trip to the lab’ or ‘every 30 seconds, imagine a different 
object’. 
 A different strategy is to employ statistical methods that can (defeasibly) identify 
candidate networks. The results of Allen et al. ([2014]) and Andrews-Hanna et al. ([2014]) 
demonstrate that sophisticated analyses or time-windowing can reveal better targets for 
psychological inference. Of course, as we argued earlier, simple decomposition strategies are not 
sufficient since temporal mixtures can produce spurious edges and the component networks are 
not necessarily known in advance. But we can potentially use more sophisticated methods, 
coupled with network discovery algorithms, to simultaneously infer both the networks and their 
mixing parameters. For example, standard techniques such as independent components analysis 
(ICA) can extract sources or signals that are mixed in a data stream, as the multiple networks are 
mixed. However, successful use of ICA requires that the mixture be relatively stable, and it is 
unclear whether mindwandering will lead to a stable medium-term mixture. Alternately, there are 
statistical methods that can segment a time series based on (likely) changes in the generative 
distribution, such as changepoint detection algorithms (Desobry et al. [2005]; Adams and 
MacKay [2007]) or other methods (Gregory et al. [1996]; Scargle [1998]). Those methods require 
strong assumptions, however, so may not be suitable for use with rsfMRI data. The reliability of 
these advanced statistical methods depends on open mathematical and data questions that have 
not yet been answered. And even if they do suffice to address the mixture problem, those methods 
will not solve other analysis challenges for fMRI data.10 

Finally, we can explore technological approaches to the mixture challenge. Many resting 
state experimental protocols do not collect sufficiently fine-grained data to adequately separate 
																																																								
10 For example, the challenge of inferring networks from correlations given complications such as time-averaging of 
neural activity in the BOLD signal, undersampling of fMRI measurements (Seth et al. [2013]), and many other 
issues.  



	

the mixture components or changing mixture parameters.11 Most researchers have used longer 
repetition times (TRs) in their resting state studies (though there has been a recent shift towards 
shorter 2000 – 800 ms TRs), as these scanner settings yield improved signal-to-noise ratios 
without impairing inference about the slower changes that have been the principal focus of resting 
state research. The mixture view argues, however, that significant components of the ‘resting’ 
state time series are due to cognitive functional networks that presumably change more rapidly. 
Thus, we should arguably use faster scan times so we have the temporal resolution to adequately 
separate the mixture components. Using shorter TRs may help with these challenges, and such 
studies are part of ongoing research on dynamics in the resting state.  

The main overall message is that the mixture challenge is a serious one, but matters are far 
from hopeless. There are methodological, statistical, and technological routes that could reduce 
the plausibility of spurious connections in RSNs, and thereby increase the chances of successful 
psychological inference from resting state fMRI data. Key issues for further theorizing and 
experimentation are the degree to which RSNs correlate with occurrent cognition (Van Calster et 
al. [2016]) and the extent to which RSNs change dynamically during the scanning session 
(Hutchinson et al. [2013]). 
 

5.2 Exploration via the resting state 
Given the inferential challenges that we have identified, one might suggest that we simply stop 
attaching cognitive functions to RSNs, perhaps reserving rsfMRI data for diagnostic or prognostic 
uses. We contend that this would be a mistake, as rsfMRI studies do have significant potential for 
cognitive brain mapping. However, making good on this potential (if the mixture view is on the 
right track) will require reassessing the role of rsfMRI studies in brain mapping. The core 
difference between task-based and resting state studies lies not in targeting different kinds of 
networks (intrinsic versus task-evoked networks), but rather in different degrees of experimental 
control over brain and cognitive activity. Standard task-based studies involve significant control, 
as the participants’ cognition is presumably driven principally by experimental demands. In 
contrast, resting state studies are relatively uncontrolled, often quite explicitly so. Precision about 
the exact differences in control would require a full philosophical analysis of ‘control’; as we 
noted earlier, we do not provide such an account here. However, even our earlier brief comments 
are sufficient to say more about the potential value of resting state studies. 

A common view is that greater experimental control is always better, but this claim is not 
correct in general; rather, it depends on what one is trying to learn. Significant control (including 
randomization) can be the best way to discover whether some particular factor A causes some 
particular B, as control can enable one to exclude possible confounding factors. But if one is 
instead trying to characterize or understand the typical behaviour of a system in its natural, 
unmanipulated environment, then significant experimental control can actually impair learning, 
precisely because that control can change the system from its usual states. 

Scientists often conduct exploratory experiments in order to map how a system operates in 
a ‘natural’ setting, which may be different than the operation in any particular, controlled 
experimental context (Franklin [2005]). The mixture view implies that rsfMRI studies could 
similarly reveal ‘natural’ brain behaviour.12 Task-based studies are, by design, artificial in certain 
respects, as they push the individual to engage in certain cognitive activities, typically to the 
																																																								
11 Thanks to David Plaut for emphasizing this worry. 
12 One might wonder whether laying in a scanner is a particularly ‘natural’ environment. At the very least, though, 
resting states involve more natural cognition than task-based studies. 



	

exclusion of others. Potentially, there are significant brain networks that have not been observed, 
simply because those networks underlie some task that has not been isolated in any particular 
experiment. Precisely because resting state studies are relatively uncontrolled, they hold forth the 
promise of revealing previously unknown or understudied brain networks. People’s free-ranging 
cognition plausibly traverses a wider space than experimenters have previously thought to isolate. 
By studying more naturalistic cognition, we potentially will find new networks to be studied and 
understood. Of course, we emphasize that significant methodological advances, including those 
discussed in Section 5.1, are required before we can fully realize these possibilities. 
 Moreover, if we understand resting state versus task-based fMRI studies as simply 
endpoints in a continuum of experimental control, then many other possibilities arise. This 
perspective shift suggests a number of intermediate experimental designs in which the 
experimenter only partially controls the participants’ cognitive activities. For example, one could 
conduct an fMRI study that asks people to ‘think about the last three meals that you ate’. This 
instruction is not as completely open-ended as in a traditional resting state study, but also does not 
aim for the very tight control of traditional task-based studies. More generally, resting state 
studies can be incredibly useful and powerful, but they must be interpreted with appropriate care. 
On the mixture view, these studies do not necessarily reveal some intrinsic, task-free, omnipresent 
network. They can, however, potentially reveal new brain networks and help us better understand 
naturalistic brain activity, including the ways in which different networks co-occur and interact 
when external conditions do not dictate a particular goal, task, or cognition. That is, resting state 
fMRI studies can be (we suggest) a full-blooded realization of the possibilities of exploratory 
science. In order to do so, however, we must ensure that we account for mixtures by adopting the 
methodological and analytic techniques outlined earlier. 
 

6 Conclusion 
Recent work in the philosophy of experiment suggests that exploratory experiments can reveal 
interesting patterns about a system in the absence of substantial experimental control (Steinle 
[1997]; Franklin [2005]). We propose there is sometimes a tradeoff between the degree of control 
one exerts over a target system and the possibility of discovering novel patterns. For a science 
such as human brain mapping, in which our knowledge of what structures are cognitively 
interesting and what functions they perform is somewhat limited, it may be particularly useful to 
explore both ends of this experimental spectrum. Resting state fMRI fits this view of exploratory 
experimentation: it putatively identifies functional brain networks (via functional connectivity 
patterns) in a more naturalistic setting. As we have argued in this paper, though, this very freedom 
creates a novel inferential challenge for any attempt to connect the observed functional 
connectivity networks back to psychological function(s). 
 Thus, rsfMRI reflects a shift away from the tightly controlled paradigms that characterized 
earlier cognitive neuroimaging experiments (Biswal et al. [2010]). This shift has many potential 
benefits, such as generating the prospect of discovering new functional networks, but also raises 
new problems, such as how to attach functions to the networks so discovered. Resting state fMRI 
is typically interpreted as revealing features of persistent, underlying functional networks (and not 
‘mere’ correlation structure) that can be interpreted in a number of different ways. A common 
theme is that resting state analyses can be used to identify large-scale, cognitive and metabolic, 
functional networks in advance of knowing what exactly those networks are doing. There is much 
more agreement on this point than on what networks there are, or what precise functions these 
networks may be performing. 



	

 Our account challenges this widespread way of interpreting resting state data. The mixture 
view proposes that the appearance of a single or few large-scale networks in resting state 
experiments may involve various sampling artifacts rather than genuine features of the brain’s 
functional organization. According to this view, the so-called ‘resting’ brain is a mixture of 
different kinds of processes¾background metabolic, background cognitive, and free-ranging 
conscious cognition¾that occur at different times and timescales. Mixtures of these diverse 
processes yield functional connectivity networks in which there is no way to know which inferred 
edges correspond to connections in cognitive or metabolic networks, and which to spurious 
connections. We agree that resting state analyses hold the promise of identifying novel functional 
networks, since free-ranging cognition can traverse a broader range of brain processes than 
researchers typically target in task-based studies. To find these networks, though, we must 
account for the possibility of mixtures, thereby improving the ability of resting state analyses to 
disentangle these diverse functional signals. With these methodological and analytic adjustments, 
we can potentially make good on the promise of identifying candidate cognitive networks in an 
exploratory fashion. 
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 Figure 1: (a) Two possible ‘cognitive function’ graphs; (b) One possible inferred 
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